Skip to main content

Utilizing Fruit Peel to Turn Old Li Batteries into New

Scientists led by Nanyang Technological University, Singapore (NTU Singapore) have developed a novel method of using fruit peel waste to extract and reuse precious metals from spent lithium-ion batteries to create new batteries, which was published in Environmental Science & Technology on July 9, 2020.The team has demonstrated an effective ecofriendly, and sustainable strategy to minimize the environmental footprint of both waste type their concept using orange peel, which recovered precious metals from battery waste efficiently. Further, they have made functional batteries from these recovered metals, creating minimal waste in this process.

Fruit peel to turn old into new batteries. Credit to Dr. ASG

This considerable approach is to be relatively more eco-friendly than conventional methods, the use of such strong chemicals on an industrial scale could generate a substantial amount of secondary pollutants, posing significant safety and health risks. Therefore, Scientific News Blog (SNB) team has interested in “Re-purposing of fruit peel waste as a green reductant for recycling of spent lithium ion batteries” published by Prof. C. Y. Tay & his team from NTU, Singapore. We would like to congratulate them on their new innovative technology.

The scientists have identified the new ideology, that their waste-to-resource approach tackles from food waste and electronics waste, supporting the development of a circular economy with zero waste, in which resources are kept in use for as long as possible. An estimated 1.3 billion tonnes of food waste and 50 million tonnes of e-waste are generated globally each year.

Spent batteries are conventionally treated with extreme heat (over 500°C) to smelt valuable metals, which emits hazardous toxic gases. Alternative approaches that use strong acids solutions or weaker acid solutions with hydrogen peroxide to extract the metals are being explored, but still they have to produce secondary pollutants that pose health and safety risks, or relies on hydrogen peroxide which is hazardous and unstable.

Current industrial recycling processes of e-waste are energy-intensive and emit harmful pollutants and liquid waste, pointing to an urgent need for eco-friendly methods as the amount of e-waste grows. Their team has been demonstrated that it is possible to do so with existing biodegradable substances.

“These findings build on our existing body of work at SCARCE under NTU’s Energy Research Institute (ERI@N). The SCARCE lab was set up to develop greener ways of recycling e-waste. It is also part of the NTU Smart Campus initiative, which aims to develop technologically advanced solutions for a sustainable future.

---- Chor Yong Tay, Professor, NTU, Singapore

In Singapore, a resource-scarce country, this process of urban mining to extract valuable metals from all kinds of discarded electronics becomes very important. By this method, not alone the problem of resource depletion by keeping these precious metals have been tackled in use as much as possible, but also the problem of e-waste and food waste accumulation – both a growing global crisis.

Low cost and remarkable for the sustainable developmental goals in to industries: With the industrial approaches to recycling battery waste generating harmful pollutants, hydro-metallurgy – using water as a solvent for extraction – is increasingly being explored as a possible alternative. This process involves first shredding and crushing used batteries to form a crushed material called black mass. Researchers then extract valuable metals from the black mass by dissolving it in a mix of strong acids or weak acids plus other chemicals like hydrogen peroxide under heat, before letting the metals precipitate.

The NTU team have found that the combination of orange peel that has been oven-dried and ground into powder, and citric acid, a weak organic acid found in citrus fruits, can achieve the same goal. 

From the lab experiments, the team has found that their approach was successfully extracted to around 90% of cobalt, lithium, nickel, and manganese from spend lithium-ion batteries – a comparable efficacy of this approach using hydrogen peroxide.

“The key lies in the cellulose found in orange peel, which is converted into sugars under heat during the extraction process. The specific sugars will enhance the recovery of metals from battery waste. Naturally-occurring antioxidants found in orange peel, such as flavonoids and phenolic acids, could have been contributed to this enhancement as well.

Figure 1. Mechanistic and process summary of OP-enabled recycling of spent LIBs [1].

Importantly, solid residues generated from this process were found to be non-toxic, suggesting that this method is environmentally sound, they have added.

From the recovered materials, it is then assembled with new lithium-ion batteries, which showed a similar charge capacity to commercial ones. Further research is underway to optimize the charge-discharge cycling performance of these new batteries made from recovered materials.

The researchers have suggested that this new technology is practically feasible for recycling spent lithium ion batteries in the industrial sense.

Future perspectives: The team is now looking to further improve the performance of their batteries generated from treated battery waste. They are also optimizing the conditions to scale up production and exploring the possibility of removing the use of acids in the process.

This waste-to-resource approach could also potentially be extended to other types of cellulose-rich fruit and vegetable waste, as well as lithium-ion battery types such as lithium iron phosphate and lithium nickel manganese cobalt oxide. This would help to make great strides towards the new circular economy of e-waste, and power our lives in a greener and more sustainable manner.

Reference

[1]. Z. Wu, T. Soh, J. J. Chan, S. Meng, D. Meyer, M. Srinivasan, C. Y. Tay, Environ. Sci. Technol. 54(15), 9681–9692 (2020).

Blog Written By

Dr. Y. SASIKUMAR

 School of Materials Science & Engineering,
Tianjin University of Technology,
Tianjin 300384, China

Editors

Dr. A. S. Ganeshraja

Dr. S. Chandrasekar

Dr. K. Rajkumar

 

 

 

Comments

Popular posts from this blog

Electro-Organic Synthesis: Next Emerging Technique

Industrial developments, excessive energy consumption, sustainable technologies, environmental cleaning processes are major topics of political and social discourse. Current innovations are rated not only focusing on their benefit and utility but also concerning their eco-friendly approaches. The development of green technological processes is becoming more important and requires harmless energy sources. Particularly over the past decade, the severe limitations of fossil resources intensify the movement towards sustainable synthesis techniques with a strict cutback in the ecological footprint [ 1 ]. Electro-organic synthesis belongs to the synthetic organic chemistry discipline that facilities the direct use of electricity to generate valuable compounds. Hence, it is possible to transfer green aspects of sustainable energy sources to the whole production process [ 2 ]. Since the Kolbe’s discoveries of using electricity as a reagent for organic transformations over 170 years ago, ...

Designing of Corrosion Resistant Alloys via Percolation Theory

Canada and USA Scientists have reported on designing of corrosion-resistant alloys via percolation theory and published in Nature Materials on 01 February 2021. Nickel–chromium, Iron–chromium binary alloys can serve as the prototypical corrosion-resistant metals owing to its presence of a nanometre-thick protective passive oxide film. The main key criterion for good passive behavior is the passive film should be compromised via a scratch or abrasive wear that can be reformed with a little metal dissolution. This could be a principal reason for the stainless steels and other chromium containing alloys that are used for critical applications which ranges from nuclear reactor components to biomedical implants. A long-standing unanswered question in corrosion science is the unravelling of the compositional dependence of the electrochemical behavior of the alloys [ 1, 2 ]. The discovery of the family of these alloys were increased its rate with the advent of artificial intelligence, da...

AN ACT OF FACE MASK MATERIAL USED TO PROTECT US FROM SARS-COV-2

“ In the absence of a vaccine, or effective antiviral, one of our only remaining strategies for controlling COVID-19 is to physically block the spread of SARS-CoV-2 in the community ” On 11 March 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a global pandemic [1] . In the absence of a vaccine, or effective antiviral, one of our only remaining strategies for controlling COVID-19 is to physically block the spread of SARS-CoV-2 in the community. Given that COVID-19 is a respiratory illness, the most effective physical defense likely involves widespread public use of face coverings, in conjunction with other control measures [ 2 ] . Face coverings (also variously referred to as face masks, nonmedical masks, community masks or barrier masks ) function primarily in source control; capturing droplets expelled by an infected individual [3] . Figure 1. DIY masks to protect against from viruses sounds like a crazy idea. source click here In the absence of an...

Electric Vehicle: Public Health and Climate Benefits

A research team led by Daniel Peters at Northwestern University has investigated that if we introducing electrifying vehicles in the streets of the United States could annually prevent hundreds-to-thousands of premature accidental deaths.This work highlights the potential of a synergistic solution to reduce CO 2 emissions by hundreds to millions of tons annually. The estimate of economic damages induced by introducing electrifying vehicles (EV) adoption is substantial. With current infrastructure, about 25% of electrifying vehicles adoption in the US can save approximately $16.8 billion annually, has been told in the study entitled"Public Health and Climate Benefits and Trade offs of U.S. Vehicle Electrification," in GeoHealth on 13 th August 2020 [1] .  Vehicle electrification in the United States could prevent hundreds to thousands of premature deaths annually while reducing carbon emissions by hundreds of millions of tons. This highlights the potential of co-beneficial...

Novel Approach of Plastic Waste to Flash Graphene

Prof. Algozeeb and his research collaboration team have investigated an novel approach of upcycling plastic waste (PW) products to flash graphene (FG). This method relies on Flash Joule Heating (FJH) to convert PW into FG. A sequential direct current (DC) and alternating current (AC) flash is used in order to make a high-quality graphene. In this FJH process, they established without catalyst and works for PW mixtures that can make the process suitable for handling landfill PW.  In 21 st century, PW pollution is considerable one among the various environmental issues. A very large fraction of PW ends up in the ocean, which leads to the formation of micro- and nanoplastics that threaten marine life, micro-organisms, useful bacteria, and humans. From the intense carbon footprint process, most of these synthesized plastics are used only once before dumping into landfills or water ways that terminate in the oceans. Hence, upcycling PW to higher value materials and chemicals is econ...

PROSPECTS ON PHOTOBIOREFINERY

Very recently, Prof. Dr. K. Faungnawakij and his research group have summarized a mini review report on an emerging renewable technique of Photobiorefinery . This is one of the beyond technique of Artificial Photosynthesis (AP) [1] . Despite great promises, AP technologies for solar H2 production and CO2 reduction are far uncompetitive to other promising technologies at the current stage . However, despite an enormous effort, time, and budget paid on AP-related researches throughout several decades, AP technologies have struggled to strive beyond laboratory demonstration except a very few exceptions [2] . This bitter reality makes the translation of this excellent science to practical application questionable [3] . Technoeconomic analysis shows that without achieving the aggressive technology targets, this technology will not be commercially viable. This has directed the research community towards the development of highly efficient yet expensive devices. While tremendous p...

Electromagnetic Field: Non-Chemical Water Treatment Technology

An interesting review report on “A critical review of the application of electromagnetic fields for scaling control in water systems: mechanisms, characterization, and operation” was reported by Lu Lin, Wenbin Jiang, Xuesong Xu and Pei Xu published in Nature Partner Journals Clean Water published on June 2020 [1] .   Water is the precious matter in the world. source U.S. General Services Administration has interested on non-chemical water treatment technologies. It has mentioned following important points: n on-chemical technology promises to increase the period between required blow-down cycles, thus reducing water consumption , minimizes associated issues of chemical storage, handling, and disposal, and may permit on-site re-use of cooling-tower “blow-down” water as “grey water” , it promises to be life cycle cost effective based solely on the reduction in chemical costs , this technology may reduce or eliminate chemical costs, it may not reduce other contractor costs ...

Single-Atom Catalysis in Chemistry World

The recent interest on the heterogeneous single-atom catalysts (SACs) were composed of atomically dispersed active metal cen ters in catalyst research field, because of the increased atom utilization and unique catalytic properties of such materials, which differ greatly from those of conventional nano or subnano counter parts. In this case, the fabrication of SACs are challenging, especially in the case of noble metal based catalysts and many researches are ongoing in this field for the development of improved catalysts. Many chall enges have faced for the hybridization of controlling of single atoms in suitable host materials, but it has also equally opened with unique opportunities for catalyst design. SACs with atomically dispersed active metal centers on supports represent an intermediary between heterogeneous and homogeneous catalysis. Therefore, understanding the homogeneous catalysis prototype creates a great opportunity for designing SACs and developing related applications....

A Novel Green Synthesis of Au/TiO2 Nanocomposites

Prof. Lahiru A. Wijenayaka, Sri Lanka Institute of Nanotechnology (SLINTEC), Mahenwatte, Pitipana, Homagama, Sri Lanka and his collaboration team has reported on the interesting materials for effective environmental alternative remediation via nontoxic, low cost and eco-friendly methods dedicated to the scientific community. Here, a novel, facile, and green synthetic approach to synthesize gold nanoparticle decorated over TiO 2 (Au/TiO 2 ) nanocomposites for sustainable environmental development has been discussed [ 1 ] . Based on various metal oxide semiconductor (MOS) photocatalysts, titanium dioxide (TiO 2 ) is the most widely used, owing to its effective and excellent results in optical transmittance, high refractive index, chemical stability, concurrently being stable, nontoxic, and inexpensive [ 2 ]. They are highlighted with the following points: (i) Synthesis of the Au/TiO 2 nanocomposite, (ii) Microscopic characterization, (iii) Dye adsorption on Au/TiO 2 and (iv) Photoca...

Postdocs Crisis: The "Last Generation" of Scientists

Postdoctoral Researchers play a vital role in the research productivity of several countries and serving as leaders, mentors, guides, teachers, and scientists. These researchers have developed their own skills and preparing themself for their scientific research careers with various research groups worldwide. Even performing in a short term, they need to spend additional years in some special cases for succession in their research careers. Senior research investigators or leaders who have promised to their younger colleagues or students for a long term contract in the academics should find a new pathway to make it possible to stay and plan for their long-term career. Also, these investigators should be more flexible, patience, and supportive for everyone in their research groups. But the main key point which they should focus on that was the researchers who want to pursue fulfilling careers in science elsewhere need to be supported in all means, whatever matters, whoever may be, the ta...