Skip to main content

Electro-Organic Synthesis: Next Emerging Technique

Industrial developments, excessive energy consumption, sustainable technologies, environmental cleaning processes are major topics of political and social discourse. Current innovations are rated not only focusing on their benefit and utility but also concerning their eco-friendly approaches. The development of green technological processes is becoming more important and requires harmless energy sources. Particularly over the past decade, the severe limitations of fossil resources intensify the movement towards sustainable synthesis techniques with a strict cutback in the ecological footprint [1].

Electro-organic synthesis belongs to the synthetic organic chemistry discipline that facilities the direct use of electricity to generate valuable compounds. Hence, it is possible to transfer green aspects of sustainable energy sources to the whole production process [2]. Since the Kolbe’s discoveries of using electricity as a reagent for organic transformations over 170 years ago, this technique has not been accepted by the broad organic chemistry community, although less hazardous materials are being used. Recently, several groups have shown interest and exploring this subject to provide sufficient knowledge for further research.

D. Pollok and S. R. Waldvogel from Johannes Gutenberg University Mainz, Germany reported a review article about “Electro-organic synthesis – a 21st century technique” in Chemical Science (2020) [3]. In this E-content, we are highlighting the topics with essential pathway towards future views to our blog readers.

Electro-organic synthesis is involved in following research areas such as electrocatalysis, redox-tags, the cation-pool method, bio-electrochemistry, and electro-organic synthesis in a continuous flow. These techniques have also gained significant attention from industry and open pathways for various novel developments.  However, we can identify many research articles turns towards and encouraging the use of this method by showing the process simplicity. The fundamental principles of this synthetic process involved in redox reactions. 

Baran and co-workers published a general overview of electro-organic developments since 2000 [4]. In this article they completely reviewed on synthetic developments with great importance in contemporary synthesis: 

  • Electrochemical fluorination.
  • Electrochemical C-N functionalization of arenes.
  • Kolbe electrolysis.
  • Electrochemical arene couplings.
  • Electrochemical construction of heterocycles.
  • Electrochemistry in the synthesis of natural products related compounds, and late-stage functionalization.
Figure 1. The schematic diagram of some of the organic compounds is synthesized by electro-organic method [2].

Electro-organic method to solve the challenges in synthetic organic chemistry:

First, carbon–carbon bond formation has been a crucial tool in synthetic organic chemistry over years of research and is an integral part of organic synthesis. Organo-catalysis or transition metal-based catalysts are used to selectively form these bonds. Scientists have been reported on the formation of C-C bond in the organic synthetic process. In particularly, Little et al. investigated electro-organic approaches such as reductive carbon–carbon couplings with olefin and carbonyl compounds focused on mechanistic themes to provide deeper insight into electro-organic reaction mechanisms [5]. Schafer et al. used Kolbe electrolysis for cascade reactions, forming novel carbon–carbon bonds in complex architectures [6].

Secondly, the major role challenges in organic chemistry are direct, selective C–H activation due to the high oxidation potentials. In this regard, Moeller et al. have established anodic olefin coupling reactions to access cyclic substrates which include sophisticated functionalities using a conventional 6 V battery in an undivided beaker cell [7]. Yoshida et al. have the major contributions in direct electrochemical C–H activation with the development of the “cation-pool” method.

Thirdly, the challenge on the formation of biaryls, which are highly important for materials science and active pharmaceutical ingredients (APIs), which occurs in natural products, electro-organic transformations with a broad variety of possibilities. Waldvogel et al. have synthesized several symmetric and non-symmetric biphenyls as well as phenol–(hetero)arene cross-coupled products with reagent- and metal-free electro-organic protocols [8].

In comparison to photo-redox catalysis, electro-catalysis process can not only use a small part of the solar spectrum but can take advantage of the whole energy range without loss [9].

Ackermann and his research team are the leaders in this field. They found an outstanding property for cobalt electro-catalysts in oxidations involving alcohols, alkenes, alkynes, amines, allenes, carbon monoxide, carboxylic acids, and isocyanides [9]. 

Some of the important parameters that are considered for developing this field in the near feature:

  • A major criterion is the parameter of reproducibility of experiments which is accompanied by a variety of different parameters influencing the reaction.
  • The development of novel electrode materials enhances the performance of electro-organic conversions.
  • A major drawback of electro-organic transformations is the long reaction time due to the sensitivity of substrates towards higher current densities, which hampers broader acceptance of the technique in organic chemistry laboratories.
  • The development of novel processes is driven by the issues of sustainability and cost-efficiency.
  • Despite the successful development of electro-organic processes, the challenging task of scale-up for industrial applications has to be faced.
  • The major advantage of electro-organic synthesis in comparison to conventional transformation is the absence of metal contamination in the products if carbon allotropes are used as electrodes, which is highly favored in the synthesis of APIs.
  • Electro-organic synthesis possesses several relevant features for these syntheses like mild reaction conditions, shortened pathways, atom- and cost efficiency, and avoidance of (over-)stoichiometric hazardous reagents. However, electro-organic conversions of complex molecules are still rare because most electro-organic protocols use ordinary substrates containing a single redox-active functionality.
  • The synthesis of natural products requires the installation of chiral information. In comparison to conventional asymmetric catalysis, only a few electro-organic conversions facilitate asymmetric reactions, commonly with unsatisfactory enantiomeric excess.
  • Electrochemistry has exhibited powerful capabilities and can be combined with renewable feedstocks for the generation of fuels and chemicals.
  • Electro-chemical water splitting is a current topic of research for producing high-quality hydrogen and oxygen. However, the over-potential for oxygen evolution within water splitting is still a major issue.
  • Electro-organic conversions have emerged at a rapid speed, providing numerous techniques. Reports usually provide a mechanistic rationale for the electro-organic transformation observed.

Future Perspectives

Over the last few decades, more significant progress was made in this field. Many research groups are now focusing on this topic as it combines various advantages of social and political importance with efficient synthetic applications. 

Our SNB Team recommended this research article to help the reader to know about the electro-organic synthesis, a future emerging technique which belongs to the synthetic organic chemistry discipline for the usage of electricity to generate valuable compounds. The successful conversions of renewable bio-based feedstocks are the first evidence of its potential in research. Renewable electricity sources and the electrosynthesis of value-added chemicals together will be a game-changer for the chemical industries in the near future.

 References

  1. R. Cernansky, Nature, 519, 379 (2015).
  2. A. Wiebe, et al., Angew. Chem. Int. Ed. 57, 5594 (2018).
  3. D. Pollok and S. R. Waldvoge, Chem. Sci., (2020) DOI: 10.1039/d0sc01848a.
  4. P. S. Baran, et al., Chem. Rev. 117, 13230 (2017).
  5. R. D. Little and M. K. Schwaebe, in Electrochemistry VI Electroorganic Synthesis: Bond Formation at Anode and Cathode, Springer Berlin Heidelberg, Berlin, Heidelberg, 185,1–48 (1997).
  6. Schafer, et al. Angew. Chem., Int. Ed. Engl., 23, 980 (1984).
  7. K. D. Moeller, et al., Green Chem., 16, 69 (2014).
  8. S. R. Waldvogel, et al., Acc. Chem. Res., 53, 45 (2020).
  9. L. Ackermann, Acc. Chem. Res., 53, 84 (2020).
Blog Written By

Dr. A. S. Ganeshraja
Assistant Professor
National College, Tiruchirappalli
Tamil Nadu, India
Editors
Dr. K. Rajkumar
Dr. S. Chandrasekar

Reviewers
Dr. Y. Sasikumar
Dr. K. Vaithinathan
Dr. S. Thirumurugan

Comments

Popular posts from this blog

PROSPECTS ON PHOTOBIOREFINERY

Very recently, Prof. Dr. K. Faungnawakij and his research group have summarized a mini review report on an emerging renewable technique of Photobiorefinery . This is one of the beyond technique of Artificial Photosynthesis (AP) [1] . Despite great promises, AP technologies for solar H2 production and CO2 reduction are far uncompetitive to other promising technologies at the current stage . However, despite an enormous effort, time, and budget paid on AP-related researches throughout several decades, AP technologies have struggled to strive beyond laboratory demonstration except a very few exceptions [2] . This bitter reality makes the translation of this excellent science to practical application questionable [3] . Technoeconomic analysis shows that without achieving the aggressive technology targets, this technology will not be commercially viable. This has directed the research community towards the development of highly efficient yet expensive devices. While tremendous p...

Impact on Climate and Land Use Changes Around Ganga River

In India, Ganga is the largest river and also famous spiritual river, in meantime pollution issue in Ganga river is considered to be one of the most discussed topics on river water quality in the past decades . The river gets s everely polluted with untreated industrial and human wastes, and the river crossed around 11 states in India and provides water for about 40% of India's population, approximately 500 million people, we couldn’t find more than any other river in the world [ 1, 2 ]. Central Pollution Control Board (CPCB) has mentioned that 764 grossly polluting industries were discharging into the Ganga river, 487 industries are from the Kanpur region. Therefore, the Kanpur region was treated as the main polluted spot and immediate action should be taken for further recovery of water quality. The Kanpur region is one of the most important industrialized place in India. It is the most polluted stretch of the Ganga River, because of its excessive pollutant discharge from the i...

Electric Vehicle: Public Health and Climate Benefits

A research team led by Daniel Peters at Northwestern University has investigated that if we introducing electrifying vehicles in the streets of the United States could annually prevent hundreds-to-thousands of premature accidental deaths.This work highlights the potential of a synergistic solution to reduce CO 2 emissions by hundreds to millions of tons annually. The estimate of economic damages induced by introducing electrifying vehicles (EV) adoption is substantial. With current infrastructure, about 25% of electrifying vehicles adoption in the US can save approximately $16.8 billion annually, has been told in the study entitled"Public Health and Climate Benefits and Trade offs of U.S. Vehicle Electrification," in GeoHealth on 13 th August 2020 [1] .  Vehicle electrification in the United States could prevent hundreds to thousands of premature deaths annually while reducing carbon emissions by hundreds of millions of tons. This highlights the potential of co-beneficial...

Plasmonic Gold Nanoparticles as Designing Caps

Plasmonic nanomaterials have attracted significant interest because of its wide variety of applications such as sensing, energy conversion, photothermal therapy etc. Among the various plasmonic inorganic metals (Ag, Cu, Al, and Au) Au shows the excellent biocompatibility, chemical stability, and rich surface functionality. It can be seen that some new approaches have include the construction of metal shells on dielectric nanoparticles, and the control of island growth on nanoparticles and nanorods over the design of narrow gaps via nanoplates or nanoshells. Also, the conventional modulation of plasmonics via the control of shape, size and the aspect ratio of nanomaterials. The structural control have also arises from the active surface growth. As a result, the dynamic competition between ligand absorption and metal deposition occurs [ 1 ].   The properties of plasmonic nanostructures are highly dependent on its surface morphology, however, there are a very few methods for a...

Efficient Bio-Diesel Synthesis: Reusable Magnetic Catalysis

Prof. Anping Wang et al., with his research collaborative team from china ( 1. Guizhou University, China; and 2. Guizhou Normal University, China) and India (National Chemical Laboratory, India) have reviewed the research over views on the preparation methods, physicochemical properties, stabilization/functionalization, and the catalytic applications of magnetic materials, including magnetic acids, bases, enzymes, and acid-base bifunctional materials for the synthesis of bio-diesel. Here, we discuss only the preparation of efficient bio-diesel with merits and applications of magnetic nanocatalyst for the bio-diesel preparation . Bio-diesel products are mainly attain from bio mass feed stocks, which gives more attention in the biorefinery research affairs [1]. A green way of renewable liquid biofuels are emergency required one in present atmosphere. Among the various classes, best one is renewable diesel fuel, the chemical content of long-chain fatty acid methyl ester (FAME) or ethy...

Detection of Cancer via New Nano-Based Imaging Agents

New imaging agents were developed by physicians to detect cancer with better specificity and sensitivity. Further, they have the potential to significantly improve patient outcomes. It could offer enhanced premature cancer cells detection during routine screening and help the surgeons to identify tumor margins for surgical resection. Figure 1. In vivo visualization of 200 nm G8-liposomes imaged following intravenous injection [ 1 ]. Notice the bright accumulation and homogenous appearance of liposomes encapsulated with G8 dye (green). The vasculature region depicted here is of the mouse ear where real time flow video was taken at 30 fps. Scale bar represents 50 μm. Recently, Helen R. Salinas et al ., has evaluated the optical properties from a colorful class of pigments and dyes that humans routinely encounter [ 1 ]. These selective dyes and pigments are approved by Food and Drug Administration  (FDA) which have utilized for the coloring of foods, drugs, and cosmetics. The authors...

Scientific Research Focus on “To End Hunger”

According to the Food and Agriculture Organization of the United Nations (FAO UN), Hunger Report, Ending hunger is a major objective of the United Nations’ (UN) Sustainable Development Goals (SDG), hunger is the term used to define periods when populations are experiencing severe food insecurity - means that they go for entire days without eating due to lack of money, lack of access to food, or other resources [ 1 ]. Hunger is strongly interconnected with poverty, and it involves interactions among an array of social, political, demographic, and societal factors. An attention is must in the following topics to put an end card for poor hunger:  Global Hunger Index (GHI). World Food Program’s 2020. Global Report on Food Crises.   Smallholder-farming. Ceres2030. The two main international institutions are the International Institute for Sustainable Development (IISD) and the International Food Policy Research Institute (IFPRI) , joined forces to estimate what it would cost to ...

A Biomimetic Eye with Perovskite Nanowire

The term “Biomimetics” derived from Ancient Greek, refers to life imitation. It is an interdisciplinary field in which comes from biology, engineering, and chemistry concepts. Biomimetics is applied to the synthesis of  machines, or devices, which have functions that mimic real-life biological processes.  Prof. Fan Zhiyoung , Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China, and his team (from the University of California and Lawrence Berkeley National Laboratory, USA) has reported on the effective biological eye results with a new development “Biomimetic Eye” with supportive components such as hemispherical shape retina and perovskite nanowires  [1] .  Our eyes possess exceptional image and sensing nature, which selectively express the wide field of view, resolution, and sensitivity [2] . A specialty of biomimetic eye parts with such highlighted characteristics is a desirable one, speci...

RENEWABLE ENERGY'S ROLE IN ENVIRONMENTAL CLEEN-UP PROCESS

Human activity is overloading our atmosphere with carbon dioxide and other global warming emissions. These gases act like a blanket, trapping heat. The result is a web of significant and harmful impacts, from stronger, more frequent storms, to drought, sea level rise, and extinction. Most of global warming emissions come from our electricity sector. Most of those emissions come from fossil fuels like coal and natural gas . Sulfur dioxide (SO2) , which cause acid rain, comes from electricity generation. Nitrogen oxides (NOx) , which react with sunlight to create ground level ozone and smog, come from electricity generation.   Ozone (O3) occurs naturally in the upper atmosphere where it is beneficial.   Particulate matter is a type of air pollution more commonly referred to as soot. Carbon dioxide (CO 2 ) is a greenhouse gas that contributes to global climate change.   Mercury is a highly toxic metal that is released from coal-fired power plants. In contra...

Detection and Diagnosis: Heavy Toxic Metals

Prof. Youzhi Li, from Hunan Agricultural University, Changsha, China and his research team have recently published, “Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017”. They discussed on heavy metals like lead (Pb)  cause a severe threat to living beings because of its toxicity and bioaccumulation. Heavy metals like lead (Pb) cause a severe threat to living beings because of its toxicity and bioaccumulation. Amongst the heavy metals, lead (Pb) is the well-known one for its historical use in paints, petrol, and fuse joints in water pipes. Though the tradition of using Pb has been considerably decreased in recent years, Pb in drinking water still remains to be a problem for many societies around the world [ 1 ]. Hence, it is one of the supreme importance to monitor the levels of Pb in drinking water, so that contamination can be promptly identified and moderated. The World Health Organization (WHO) mentions a guideline l...