Skip to main content

Plasmonic Gold Nanoparticles as Designing Caps

Plasmonic nanomaterials have attracted significant interest because of its wide variety of applications such as sensing, energy conversion, photothermal therapy etc. Among the various plasmonic inorganic metals (Ag, Cu, Al, and Au) Au shows the excellent biocompatibility, chemical stability, and rich surface functionality. It can be seen that some new approaches have include the construction of metal shells on dielectric nanoparticles, and the control of island growth on nanoparticles and nanorods over the design of narrow gaps via nanoplates or nanoshells. Also, the conventional modulation of plasmonics via the control of shape, size and the aspect ratio of nanomaterials. The structural control have also arises from the active surface growth. As a result, the dynamic competition between ligand absorption and metal deposition occurs [1].

 The properties of plasmonic nanostructures are highly dependent on its surface morphology, however, there are a very few methods for appending the domain as the “functional group” or modifiers. The fundamental control of the domain appending on a seed nanoparticle is via the interfacial energy and the wetting growth mode leads to the  conformal coating on the seed. Also, the modulation of plasmonics will essentially control the size of the seed. Here they have studied a systematic analysis on the growth of Au caps over Au seeds via simultaneously for the use of a hydrophobic thiol ligand and surfactant. Moreover, this combination have achieved a powerful control for the active surface which leads to a dynamic modulation of spreading the vertical growth of the Au caps. By modulating the plasmonic properties, this methodology offers a wide variety of caps and modulate Au hats on Au nanoparticles, which includes of  helmets, crowns, antler hats, antenna hat, beret hats and mortar boards [1].

 Plasmonic modulations need more synthetic handles with a systematic development from the perspectives of synthetic advance is of a critical importance. The main prerequisite for tuning cap morphology is the stable and monodispersed AuNPs. Strong  hydrophobic ligand of 4,5-diphenyl-2-imidazolethiol (DPI) was used with the combination of a cationic surfactant myristyl trimethyl ammonium bromide (MTAB). It can be found that a serious aggregation have caused due to the exchange of direct ligand between DPI and citrate. Therefore, at first we need to replace the citrate with MTAB thus, the resulting mixture will be highly stable and are used as the stock solutions for all the synthesis. DPI was further added to functionalize and activate the Au surface [1].

Figure 1. Schematic representation of the synthesis of mortarboard, helmet and beret hat [1].

At each side of Au seed, a domain growth was observed (Figure 1) when the concentration of NaOH is found to be 0.825 mM, 64% of the domains found to be nanoplate, and the remaining are of polyhedrons. 68% of nanoplate were attached tangent to the spherical seeds and placed via its center and it is named as mortar board for the structural similarity. However, when the concentration of NaOH was increased to 3.96 mM, then the initial color change was occurred after 2 minutes. Here, the emerging Au domain will become more thicker with an obvious curvature, appearing as a helmet on the seed nanoparticle, instead of nanostructures with plate shapes.

To explore the intermediate states, a series of reaction is carried out between the mortar board and the helmet which are distinctively different form of the growth modes. On comparison to the helmets, the thickness of the helmets and beret hats are found to be similar, with the only main differences was the coverage of the seed. The growth of island domain on a seed is essentially found to be a solid–solid wetting phenomenon. As per the literature reports, when a metal domain is directly grown on a metal seed, then it is due to the wetting growth mode. On the other hand, if the metal domain is grown on the ligand covered metal surface, then it is due to the non-wetting growth mode. It can be obviously seen that, the formation of the helmet was not instantaneous, however it gradually grows with its size and coverage [2].

The main critical factor is the dynamic competition between ligand inhibition and the Au deposition. The possible outcome with varying the reduction rates will leads to the different morphologies of the new Au domains. Moreover, 20% of the nanoplates were attached to the side of the seeds which may arise from the independently developed new Au domain of random twinning. Also, the twinning is not occur for all the nuclei, with mainly 36% of the Janus nanostructures did not show any plate morphological structures. 

Figure 2. Schematic representation of the active surface growth [1].

As it can be seen that, some of the sites (Figure 2) seems to be new and some may be old, the differentiation can be explained by the non-uniform spreading and the formation of petals. For pushing the limit of spreading growth, they tried to increase the amount of Au growth on each seed. The reactants were also kept at the same concentration to maintain the growth mode.

Figure 3. Schematic representation of the growth of crown, antler hats and antennas [1].

When the concentration of NaOH is further increased to 6.6mM, there is no any structural changes. Moreover, to the increase the rate of reduction, they have tried to increase the concentration of the reductant 2,7-dihydroxynaphthalene (DHN). While, the emerging hat is still on the seed, and its shape has evolved to complete with various different forms. Hence, there is sign of vertical active surface growth in addition to the spreading growth [1].

Our SNB team have emphasize this research article to enrich our viewer’s knowledge about the study on a systematic analysis on the growth of gold caps over Au seeds via simultaneously with a hydrophobic thiol ligand and surfactant for designing the caps (helmets, crowns, antler hats, antenna hat, beret hats and mortarboards). The morphological structures and plasmonic property of a nanomaterials are highly attentive in the research work. The dynamic role and competition between the concern growth sites in contrast to the wetting growth was developed via active nature of surface growth. This will give rise to the encapsulation of shells, while the non-wetting growth gives to appending spheres. Hence, they reported that the active surface growth methodology is an fruitful and effective one to enrich a structural modulation for appending the domain of Au seeds.

References

[1] X. Tian, et al., ChemSci., (2021), DOI: 10.1039/d0sc05780k.

[2] J. Huang, et al., Nano Lett., 16, 617 (2016).

--- Dr. Y. Sasikumar

Author Profile

Comments

Popular posts from this blog

Electro-Organic Synthesis: Next Emerging Technique

Industrial developments, excessive energy consumption, sustainable technologies, environmental cleaning processes are major topics of political and social discourse. Current innovations are rated not only focusing on their benefit and utility but also concerning their eco-friendly approaches. The development of green technological processes is becoming more important and requires harmless energy sources. Particularly over the past decade, the severe limitations of fossil resources intensify the movement towards sustainable synthesis techniques with a strict cutback in the ecological footprint [ 1 ]. Electro-organic synthesis belongs to the synthetic organic chemistry discipline that facilities the direct use of electricity to generate valuable compounds. Hence, it is possible to transfer green aspects of sustainable energy sources to the whole production process [ 2 ]. Since the Kolbe’s discoveries of using electricity as a reagent for organic transformations over 170 years ago, ...

Designing of Corrosion Resistant Alloys via Percolation Theory

Canada and USA Scientists have reported on designing of corrosion-resistant alloys via percolation theory and published in Nature Materials on 01 February 2021. Nickel–chromium, Iron–chromium binary alloys can serve as the prototypical corrosion-resistant metals owing to its presence of a nanometre-thick protective passive oxide film. The main key criterion for good passive behavior is the passive film should be compromised via a scratch or abrasive wear that can be reformed with a little metal dissolution. This could be a principal reason for the stainless steels and other chromium containing alloys that are used for critical applications which ranges from nuclear reactor components to biomedical implants. A long-standing unanswered question in corrosion science is the unravelling of the compositional dependence of the electrochemical behavior of the alloys [ 1, 2 ]. The discovery of the family of these alloys were increased its rate with the advent of artificial intelligence, da...

AN ACT OF FACE MASK MATERIAL USED TO PROTECT US FROM SARS-COV-2

“ In the absence of a vaccine, or effective antiviral, one of our only remaining strategies for controlling COVID-19 is to physically block the spread of SARS-CoV-2 in the community ” On 11 March 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a global pandemic [1] . In the absence of a vaccine, or effective antiviral, one of our only remaining strategies for controlling COVID-19 is to physically block the spread of SARS-CoV-2 in the community. Given that COVID-19 is a respiratory illness, the most effective physical defense likely involves widespread public use of face coverings, in conjunction with other control measures [ 2 ] . Face coverings (also variously referred to as face masks, nonmedical masks, community masks or barrier masks ) function primarily in source control; capturing droplets expelled by an infected individual [3] . Figure 1. DIY masks to protect against from viruses sounds like a crazy idea. source click here In the absence of an...

Electric Vehicle: Public Health and Climate Benefits

A research team led by Daniel Peters at Northwestern University has investigated that if we introducing electrifying vehicles in the streets of the United States could annually prevent hundreds-to-thousands of premature accidental deaths.This work highlights the potential of a synergistic solution to reduce CO 2 emissions by hundreds to millions of tons annually. The estimate of economic damages induced by introducing electrifying vehicles (EV) adoption is substantial. With current infrastructure, about 25% of electrifying vehicles adoption in the US can save approximately $16.8 billion annually, has been told in the study entitled"Public Health and Climate Benefits and Trade offs of U.S. Vehicle Electrification," in GeoHealth on 13 th August 2020 [1] .  Vehicle electrification in the United States could prevent hundreds to thousands of premature deaths annually while reducing carbon emissions by hundreds of millions of tons. This highlights the potential of co-beneficial...

Novel Approach of Plastic Waste to Flash Graphene

Prof. Algozeeb and his research collaboration team have investigated an novel approach of upcycling plastic waste (PW) products to flash graphene (FG). This method relies on Flash Joule Heating (FJH) to convert PW into FG. A sequential direct current (DC) and alternating current (AC) flash is used in order to make a high-quality graphene. In this FJH process, they established without catalyst and works for PW mixtures that can make the process suitable for handling landfill PW.  In 21 st century, PW pollution is considerable one among the various environmental issues. A very large fraction of PW ends up in the ocean, which leads to the formation of micro- and nanoplastics that threaten marine life, micro-organisms, useful bacteria, and humans. From the intense carbon footprint process, most of these synthesized plastics are used only once before dumping into landfills or water ways that terminate in the oceans. Hence, upcycling PW to higher value materials and chemicals is econ...

PROSPECTS ON PHOTOBIOREFINERY

Very recently, Prof. Dr. K. Faungnawakij and his research group have summarized a mini review report on an emerging renewable technique of Photobiorefinery . This is one of the beyond technique of Artificial Photosynthesis (AP) [1] . Despite great promises, AP technologies for solar H2 production and CO2 reduction are far uncompetitive to other promising technologies at the current stage . However, despite an enormous effort, time, and budget paid on AP-related researches throughout several decades, AP technologies have struggled to strive beyond laboratory demonstration except a very few exceptions [2] . This bitter reality makes the translation of this excellent science to practical application questionable [3] . Technoeconomic analysis shows that without achieving the aggressive technology targets, this technology will not be commercially viable. This has directed the research community towards the development of highly efficient yet expensive devices. While tremendous p...

Electromagnetic Field: Non-Chemical Water Treatment Technology

An interesting review report on “A critical review of the application of electromagnetic fields for scaling control in water systems: mechanisms, characterization, and operation” was reported by Lu Lin, Wenbin Jiang, Xuesong Xu and Pei Xu published in Nature Partner Journals Clean Water published on June 2020 [1] .   Water is the precious matter in the world. source U.S. General Services Administration has interested on non-chemical water treatment technologies. It has mentioned following important points: n on-chemical technology promises to increase the period between required blow-down cycles, thus reducing water consumption , minimizes associated issues of chemical storage, handling, and disposal, and may permit on-site re-use of cooling-tower “blow-down” water as “grey water” , it promises to be life cycle cost effective based solely on the reduction in chemical costs , this technology may reduce or eliminate chemical costs, it may not reduce other contractor costs ...

Single-Atom Catalysis in Chemistry World

The recent interest on the heterogeneous single-atom catalysts (SACs) were composed of atomically dispersed active metal cen ters in catalyst research field, because of the increased atom utilization and unique catalytic properties of such materials, which differ greatly from those of conventional nano or subnano counter parts. In this case, the fabrication of SACs are challenging, especially in the case of noble metal based catalysts and many researches are ongoing in this field for the development of improved catalysts. Many chall enges have faced for the hybridization of controlling of single atoms in suitable host materials, but it has also equally opened with unique opportunities for catalyst design. SACs with atomically dispersed active metal centers on supports represent an intermediary between heterogeneous and homogeneous catalysis. Therefore, understanding the homogeneous catalysis prototype creates a great opportunity for designing SACs and developing related applications....

A Novel Green Synthesis of Au/TiO2 Nanocomposites

Prof. Lahiru A. Wijenayaka, Sri Lanka Institute of Nanotechnology (SLINTEC), Mahenwatte, Pitipana, Homagama, Sri Lanka and his collaboration team has reported on the interesting materials for effective environmental alternative remediation via nontoxic, low cost and eco-friendly methods dedicated to the scientific community. Here, a novel, facile, and green synthetic approach to synthesize gold nanoparticle decorated over TiO 2 (Au/TiO 2 ) nanocomposites for sustainable environmental development has been discussed [ 1 ] . Based on various metal oxide semiconductor (MOS) photocatalysts, titanium dioxide (TiO 2 ) is the most widely used, owing to its effective and excellent results in optical transmittance, high refractive index, chemical stability, concurrently being stable, nontoxic, and inexpensive [ 2 ]. They are highlighted with the following points: (i) Synthesis of the Au/TiO 2 nanocomposite, (ii) Microscopic characterization, (iii) Dye adsorption on Au/TiO 2 and (iv) Photoca...

Postdocs Crisis: The "Last Generation" of Scientists

Postdoctoral Researchers play a vital role in the research productivity of several countries and serving as leaders, mentors, guides, teachers, and scientists. These researchers have developed their own skills and preparing themself for their scientific research careers with various research groups worldwide. Even performing in a short term, they need to spend additional years in some special cases for succession in their research careers. Senior research investigators or leaders who have promised to their younger colleagues or students for a long term contract in the academics should find a new pathway to make it possible to stay and plan for their long-term career. Also, these investigators should be more flexible, patience, and supportive for everyone in their research groups. But the main key point which they should focus on that was the researchers who want to pursue fulfilling careers in science elsewhere need to be supported in all means, whatever matters, whoever may be, the ta...