Skip to main content

Twisted Multilayer MoS2 Growth on SrTiO3 for 2D materials

Monolayer two dimensional (2D) transition metal dichalcogenides (TMDs) are recent emerged one among all other optoelectronic material, because of its strong light−matter interactions for direct bandgap. However, these multilayer counter parts exhibited an indirect bandgap resulting to poor quantum yield of photon emission. Sinu Mathew and his collaborators have been reported on the strong direct bandgap-like photoluminescence (PL) at ∼1.9 eV, a multilayer MoS2 grown on SrTiO3 in ACS Nano on November 2020. They found that the intensity is significantly higher than the observed multilayer MoS2/SiO2. However, it affects the evolution of band structure in multilayer MoS2 which causes the higher photo carrier recombination for the direct bandgap. To enable multilayer TMDs for robust optical device applications, these results will provide a suitable platform. In this research, they have demonstrated a strong direct bandgap-like PL emission via chemical vapor deposition (CVD) growth multilayer MoS2 on SrTiO3 (STO), with an archetypal perovskite transition metal oxide substrate [1].

2D transition materials are characterized of weak out-of-plane van der Waal (vdW) forces even without lattice or interlayer crystallographic orientation matching which can easily stack them to the formation of vertical heterostructures. It can be seen that the 2D materials families will have the monolayers of TMD semiconductors, which can exhibit several intriguing properties like strong direct bandgap photoluminescence (PL). MoS2 have been popular in the visible range with tightly bound excitons and trions [2].

In 2D materials, TMDs has attracted an significant interest on the evolution of interlayer coupling and its dramatic effects on band response in structural features. Meanwhile, the monolayers have direct bandgap, bilayer and multilayer TMDs are indirect bandgap, which results to a very weak PL emission. It can also be seen that the multilayers have exhibited indirect bandgap and low PL yield, the increase of optical density with the thickness is a challenging one and for the enhancement of this yield would be required modification in the band structure. However, there are some effort in this direction, that led to two major approaches [3]:

  • Intercalation of light atomic species in the van der Waals gap.
  • Fabrication of bilayer heterostructures with an interlayer twist.

As per supportive evidence, the MoS2 domains are randomly oriented and their relative orientation layers would be different during the coalesce of continuous film formation. Hence, this results to an interlayer twist, which could cause the multilayer MoS2 film deviation from conventional 2H configuration. Notably, to illustrate the strong luminescence from the twisted multilayer samples, an interlayer twist will influence PL intensity, and the changes observed are not adequate. For instance, the interlayer twist in bilayer MoS2/SiO2 will not considerably enhance the PL emission intensity. Meanwhile for twisted bilayer MoS2/STO, the change in PL intensity between a twisted bilayer and a monolayer sample would be negligible (almost 0.7% of the monolayer).
                          


 


Figure 1. Schematic diagram, the crystal structure of a 2-H oriented bilayer MoS2compared with the crystal structure of twisted MoS2/STO [1].

An observation of strong direct bandgap-like PL from multilayer MoS2 grown on STO at 1.9 eV is mainly due to the combined effect of interlayer twist and enhanced vdW gap. The possible reason for the enhanced vdW gap separation on the samples is mainly due to growth of multilayer MoS2 exposure at elevated temperatures for a prolonged period of time. This will cause oxygen out diffusion from the STO lattice. As per the previous reports, similar oxygen out diffusion was observed in oxide thin film heterostructures. Therefore, in their results they predict that the oxygen in their case might be intercalated between the MoS2 which lead to further expansion of the vdW gap resulting to an enhanced interlayer decoupling [4,5].

One of the main key differences in the growth of multilayer MoS2 on STO is to compared their growth on SiO2 which induced interlayer twist and mild self-intercalation of oxygen, the oxygen in STO is highly mobile at a growth temperature of 700 °C. Hence, this weakens the interlayer coupling, which leads to a strong light emission. It can also be an interesting fact that the exploration the multilayer growth TMDs on complex oxide perovskites similar to that of SrTiO3 such as BaTiO3 and EuTiO3, which exhibit structural phase transitions, spontaneous charge ordering.

Our SNB team have emphasize this research article to enrich our viewer’s knowledge about the twisted multilayer MoS2 growth on SrTiO3 for a strong photoluminescence. Observation of strong PL emission from multilayer MoS2 samples can enable its use for the applications. This require a strong PL emission and absorption such as nanoscale detectors and light emitters where they used only the monolayers. Being a single layer of atoms, monolayer MoS2 and other related TMDs are sensitive to ambient, that degrades its performance in over time. Thus, the observation of strong PL emission from multilayered MoS2 could offer a better solution which would be more stable in the performance. Therefore, a fundamental perspective, like mixed dimensional heterostructures can provide additional pathways to achieve optoelectronic tunability in 2D semiconductors.

References

  1. S. Sarkar et al., ACS Nano (2020),https://dx.doi.org/10.1021/acsnano.0c04801.
  2. G. Wang, et al., Rev. Mod. Phys. 90, 021001 (2018).
  3. R.Dhall,et al.,Adv. Mater., 27, 1573 (2015).
  4. De Souza, Adv. Funct. Mater., 25, 6326 (2015).
  5. L.Hu, et al.,Appl. Phys. Lett. 105, 111607 (2014). 

--- Dr. Y. Sasikumar

Author Profile

Comments

Popular posts from this blog

A Biomimetic Eye with Perovskite Nanowire

The term “Biomimetics” derived from Ancient Greek, refers to life imitation. It is an interdisciplinary field in which comes from biology, engineering, and chemistry concepts. Biomimetics is applied to the synthesis of  machines, or devices, which have functions that mimic real-life biological processes.  Prof. Fan Zhiyoung , Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China, and his team (from the University of California and Lawrence Berkeley National Laboratory, USA) has reported on the effective biological eye results with a new development “Biomimetic Eye” with supportive components such as hemispherical shape retina and perovskite nanowires  [1] .  Our eyes possess exceptional image and sensing nature, which selectively express the wide field of view, resolution, and sensitivity [2] . A specialty of biomimetic eye parts with such highlighted characteristics is a desirable one, specifically in robotics

Pottery Shard CNTs Discovery in Sixth Century: Keeladi, Tamilnadu, India

Prof. Manivannan et al., and his research collaboration team have been investigated the discovery of carbon nanotubes in sixth century BC potteries that have obtained from Keeladi, Tamilandu, India. This investigation has reported in Nature publication journal of “Scientific Reports” on 13 th November 2020 [ 1 ]. This is one of the most interesting reports and scientific research from Keeladi excavation located in the southern part of India. Keeladi Excavation: The excavation was first started in Pallisanthai Thidal which is in the north of Manalur, about a kilometer east of the town of Keeladi in Sivagangai district, Tamilnadu, India. Number of various archaeological residues were found in this excavation, when plowing the land around the site. The first survey was conducted in 2013 in the vicinity of the Vaigai river, 293 sites were identified during the study including Keeladi, and all this sites have an archaeological residues [ 2 ]. A part of excavation, researchers found carbon

Bifunctional Water Splitting Catalysts: Large Current Density

Fuel cell technology is one of the most emerging fields with ecofriendly and everlasting energy source way of producing energy for the urgent requirements. Further it needs to be improved to make it cheap and more environmental friendly. Among all fuel cells, the hydrogen (H 2 ) and oxygen (O 2 ) fuel cell is the one with zero carbon emission, more ecofriendly, high potential and the byproduct is just only the water. However, supplying the fuels in the purest form (at least the H 2 ) is very essential to ensure higher life cycles and less decay in cell efficiency. Nowadays, commercially available large scale H 2 production is mainly dependent on steam reforming of fossil fuels which can also generates CO 2 along with H 2 and the source that is going to be depleted, and this byproduct is not environmental friendly. Therefore, an emerging alternate technology is needed; in this case the electrolysis of water has given a greater attention than the steam reforming.  Recently many sc

Efficient Bio-Diesel Synthesis: Reusable Magnetic Catalysis

Prof. Anping Wang et al., with his research collaborative team from china ( 1. Guizhou University, China; and 2. Guizhou Normal University, China) and India (National Chemical Laboratory, India) have reviewed the research over views on the preparation methods, physicochemical properties, stabilization/functionalization, and the catalytic applications of magnetic materials, including magnetic acids, bases, enzymes, and acid-base bifunctional materials for the synthesis of bio-diesel. Here, we discuss only the preparation of efficient bio-diesel with merits and applications of magnetic nanocatalyst for the bio-diesel preparation . Bio-diesel products are mainly attain from bio mass feed stocks, which gives more attention in the biorefinery research affairs [1]. A green way of renewable liquid biofuels are emergency required one in present atmosphere. Among the various classes, best one is renewable diesel fuel, the chemical content of long-chain fatty acid methyl ester (FAME) or ethy

Threatened Species: An Alert of Red List from IUCN

International Union for Conservation of Nature (IUCN) organization was established in 1964 to safeguard our natural species information details. This organization helps to identify the species when these are diminished due to abnormal issues in environmental forces or evolutionary changes in their population numbers. IUCN was recommended the information on the global risk status of plants, fungus, and animal species [1] . Overall world, the term “Biodiversity” and their conservation progress is an attentive one. As per IUCN, the announced Red List shows a critical condition of the world’s natural biodiversity. The major part of assessments representing on the Red List (in IU CN) are accounted out by following government/non-government members:  Species Survival Commission  (SSC).  Red List Partners .  Red List Authorities  (RLAs).  O ther specialists (who working on assessment projects).  It gives information about the probable range, habitat, population size, ecology, threats, and co

Wearable Laser-Induced Graphene Mask

Prof. Ruquan Ye, from city University of Hong Kong and his collaboration with Prof. Chunlei Zhu, Ben Zhong Tang, and their research team have developed photo-thermally laser-induced graphene as a wearable mask with superior antibacterial capacity. Face masks have become a life-sustaining role in fighting against the outbreak of diseases like EBOLA and COVID-19. However, improper usage and disposal of masks may lead to secondary transmission around the globe. The vital role of the mask is a primary source to prevent us from COVID-19. In this pandemic situation, we must be alert about the used mask materials. The materials should safeguard us from COVID-19 as well as it must be bio-degradable material to safeguard around the world.       The masks, currently available in the market are of single-use with/without filtering layers of thermoplastic materials like polypropylene. The degradation of these used masks takes at least 10 year

Hot Hole-Deriven Water Splitting via LSPR Metal Nanostructures

The localized surface plasmon resonance (LSPR) in metal nanostructures is one of the most efficient materials for the futuristic energy, environmental science and industry. The new era is the ability to significantly drive and promote photocatalytic reactions and photodetection which acts as an interfacial energy transfer to adsorbate molecules and semiconductors.  The combination of plasmonic noble metallic nanostructures with semiconductors for plasmon-enhanced visible light-driven water splitting (WS) has attracted considerable attention. WS is one of the most capable way to save solar energy into other useful energy applications. In WS, solar energy is converted to chemical energy mainly in the form of hydrogen and oxygen. Some of the review reports indicate that the highest reported quantum efficiency for overall WS achieved is 57% with NiO/NaTaO 3 :La photocatalyst under the excitation wavelength of 270 nm [1]. Its large scale commercial applications are still lacking due to

Micro-Alloying of ‘Stainless Mg’ via Ca: Exceptional Corrosion Resistance

German Scientists have established an alloy with ultra-high-purity of magnesium of exceptionally low corrosion rate– Stainless Magnesium approach, via alloying of pure magnesium (Mg) with a tiny amounts of calcium (Ca) has been reported in Materials Horizons on 24 th November 2020. Mg is found to be the lightest structural metal with various properties like high strength-to-weight ratio, excellent electrochemical characteristics, Young’s modulus similar to human bone with low cost. Mg is widely used in aerospace, electronic, automotive, biomedical and energy-storage applications owing to its high strength, low weight, and excellent electrochemical properties, due to its abundance in the earth’s crust. Particularly, Mg possess light weight than aluminium (Al) and makes attractive from a sustainable perspective. Therefore, replacing of Al with ‘ Stainless Mg ’ in flights and cars will reduce the fuel consumption with free of carbon dioxide emissions. However, its usage is limited and r

Giant Spontaneous Hall Effect Without a Magnet

Surprising phenomenon in the solid state physics was “ The Hall effect, which requires normally magnetic fields, can also be generated completely in a different way by without the magnet to give an extreme strength ” – Published by Sami Dzsabera  et al., in the Proceedings of the National Academy of Sciences, on 19 th February 2021. Weyl–Kondo semimetal have been discovered recently, the three-dimensional (3D) Dirac cones that describes with massless relativistic quasiparticles, which was stabilized by breaking via  either time-reversal symmetry (TRS) or inversion symmetry (IS). Sami Dzsabera  et al., have reported the discovery of  a giant spontaneous Hall effect in 3D materials, which have not only identifies an ideal technique. However, it will demonstrates a strong correlations that can drive extreme topological responses, which we can expect to trigger for future work. Further, they reported that the giant spontaneous Hall effect of semimetal seems to be the non-centrosymmetr

Designing of Corrosion Resistant Alloys via Percolation Theory

Canada and USA Scientists have reported on designing of corrosion-resistant alloys via percolation theory and published in Nature Materials on 01 February 2021. Nickel–chromium, Iron–chromium binary alloys can serve as the prototypical corrosion-resistant metals owing to its presence of a nanometre-thick protective passive oxide film. The main key criterion for good passive behavior is the passive film should be compromised via a scratch or abrasive wear that can be reformed with a little metal dissolution. This could be a principal reason for the stainless steels and other chromium containing alloys that are used for critical applications which ranges from nuclear reactor components to biomedical implants. A long-standing unanswered question in corrosion science is the unravelling of the compositional dependence of the electrochemical behavior of the alloys [ 1, 2 ]. The discovery of the family of these alloys were increased its rate with the advent of artificial intelligence, da