Skip to main content

Gold nanocages: Photothermal related applications

Gold Nanocages (AuNCs) are made up with a ultra-thin and porous walls of Au or Au-based alloys. It is the class of hollow, porous gold nanoparticles ranging in the size from 10 to over 150 nm. Generally, AuNCs are created by reacting silver nanoparticles with chloroauric acid (HAuCl4) in boiling water. When AuNCs are irradiated with light, it exhibit a high efficiency for light-to-heat conversion and a large absorption cross section, making them effective photothermal transducers. Tuned AuNCs significantly absorb visible and near-infrared regions to optimize their interaction with the light at different wavelengths. AuNCs exhibits better photo-stability compared to the conventional organic dyes. These perspectives are of AuNCs synthesis and their use in applications involving photothermal conversion.

Figure 1. Structure of NanoRod, NanoShell, NanoCage and AuNCs. 

Recently, Qiu et al., have reviewed the synthetic methods of AuNCs and their photothermal related applications, was reported in Chemical Sciences. In the synthesis part of view, they have mentioned that the specific attention of the strategies need to be developed for tuning their size, shape, composition, thickness and porosity of the walls. AuNCs are used in various photothermal related applications such as water evaporation, phase transition, controlled release, and photothermal therapy. It is also widely used as light sensors, imaging contrast agents, photothermal transducers, and drug carriers, which are related to optics, plasmonics, and nanomedicine applications [1].

Two main general methods used for the synthesis of AuNCs

(i) A template-engaged galvanic replacement reaction: This is one of the most commonly used methods for the fabrication of AuNCs are based upon the galvanic replacement reaction between Ag nanocubes and HAuCl4 in an aqueous medium [2].

(ii) Seed-mediated growth, followed by selective etching: In this new approach, a strong reducing agent like ascorbic acid was introduced to reduce HAuCl4 while suppressing the galvanic replacement reaction between HAuCl4 and Ag [3]. The gold over layers were deposited on top of Ag2O patches would be peeled off, exposing the Ag at the corner sites during this process. Finally, the Ag core could be completely etched away with an aqueous H2O2 solution, generating an AuNC with a uniform wall thickness and well defined pores at the corner sites.

Photothermal behavior of AuNCs: One of the most fascinating properties of AuNCs is Localized Surface Plasmon Resonance (LSPR), which refers to the scattering and absorption of incident light at a resonant frequency due to the collective oscillation of conduction electrons at the surface of the nanostructure [4]. LSPR peak position of AuNCs can be readily tuned by the composition, thickness, porosity of the walls and controlling the extent of the galvanic replacement reaction. At same time, the LSPR peak of AuNCs can be easily tuned into the transparent window (700–900 nm) of soft tissues, enabling an array of biomedical applications ranging from photothermal therapy to temperature-controlled drug release. 

Applications of AuNCs 

Drug delivery: The pores are very important to present in the cage formation, the pores in the walls of AuNCs offer easy and a quick a venue for the release and loading of various types of payloads. These kinds of pores can be designed in advance with the “open or close” gating capability by integration with stimuli-responsive materials to enable on-demand release for the applications in drug delivery [5]. 

Light detection: AuNCs can be used as a photo-sensitive electrical switch. These kind of devices can also be adapted for the detection of NIR light and light detection through integration with poly(vinylidenefluoride), due to its capability to convert thermal energy to electricity. 

Water evaporation: One of the great applications, find in this field are seawater desalination and waste water purification through photothermal evaporation of water [6]. 

Phase transition: The photothermal effect associated with AuNCs has also been used to trigger the phase-transition of thermo-responsive materials. The phase transferred micropatterned ferroelectric film holds promise for application in NIR sensing and imaging [7]. 

Controlled release: The AuNC-triggered phase-transition of thermo-responsive materials can also be utilized to manage the release of therapeutic agents used for disease treatment. Thermo-responsive materials can be applied as a coating around or a filler inside AuNCs to serve as an “on or off” gate to regulate the release of payloads under NIR irradiation [8]. 

Release and decomposition: The photothermal effect associated with AuNCs can also be employed to decompose organic compounds for the production of reactive species such as radicals. For example, 2,2’-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) was encapsulated in AuNCs for the generation of reactive radicals and thereby eradication of cancer cells  [9]. More significantly, the generation of reactive species with AuNCs through thermal decomposition of AIPH was oxygen independent, making this system suitable for cancer treatment under both normoxic and hypoxic conditions. 

Photothermal therapy and potential image-guided treatment: AuNCs have received considerable attention indirectly eradicating cancer cells through localized hypothermia. Tuning their LSPR peaks into the transparent window of soft tissues in the NIR region makes this technique particularly viable for the treatment of malignance occurring deeply below the skin. Generally, AuNCs have bio-inertness, good biocompatibility and photo-stability, making them particularly attractive for the photothermal destruction of solid tumors. Encapsulation of therapeutic drugs into AuNCs will further allow for the combination therapy of photothermal treatment and temperature-controlled drug release. This type of nano sized material with multi-functional properties includes the imaging, drug delivery, controlled release, and photothermal therapy will be of great interest in nanomedicine. 

Our SNB team have emphasize this research article to enrich our viewer's knowledge on the main synthetic approach of AuNCs and their photothermal behavior as well as related diverse applications of AuNCs. Perhaps, they will be able to find a way to move through this unique class of nanomaterials to be success for the next level.

References

  1. J. Qiu, et al., Chem. Sci. (2020) DOI: 10.1039/d0sc05146b.
  2. S. E. Skrabalak, et al., Nat. Protoc., 2, 2182 (2007).
  3. X. Sun, et al., ACS Nano, 10, 8019 (2016).
  4. E. Hutter and J. H. Fendler, Adv. Mater., 16, 1685 (2004).
  5. S. Mura, et al., Nat. Mater., 12, 991 (2013).
  6. T. Wu, et al., Mater. Today Energy, 12, 129 (2019).
  7. J. Li, et al., Angew. Chem., Int. Ed., 55, 13828 (2016).
  8. G. D. Moon, et al., J. Am. Chem. Soc., 133, 4762 (2011).
  9. S. Shen, et al., Angew. Chem., Int. Ed., 56, 8801 (2017). 

--- Dr. A. S. Ganeshraja

Author Profile

Comments

Popular posts from this blog

PROSPECTS ON PHOTOBIOREFINERY

Very recently, Prof. Dr. K. Faungnawakij and his research group have summarized a mini review report on an emerging renewable technique of Photobiorefinery . This is one of the beyond technique of Artificial Photosynthesis (AP) [1] . Despite great promises, AP technologies for solar H2 production and CO2 reduction are far uncompetitive to other promising technologies at the current stage . However, despite an enormous effort, time, and budget paid on AP-related researches throughout several decades, AP technologies have struggled to strive beyond laboratory demonstration except a very few exceptions [2] . This bitter reality makes the translation of this excellent science to practical application questionable [3] . Technoeconomic analysis shows that without achieving the aggressive technology targets, this technology will not be commercially viable. This has directed the research community towards the development of highly efficient yet expensive devices. While tremendous p...

Impact on Climate and Land Use Changes Around Ganga River

In India, Ganga is the largest river and also famous spiritual river, in meantime pollution issue in Ganga river is considered to be one of the most discussed topics on river water quality in the past decades . The river gets s everely polluted with untreated industrial and human wastes, and the river crossed around 11 states in India and provides water for about 40% of India's population, approximately 500 million people, we couldn’t find more than any other river in the world [ 1, 2 ]. Central Pollution Control Board (CPCB) has mentioned that 764 grossly polluting industries were discharging into the Ganga river, 487 industries are from the Kanpur region. Therefore, the Kanpur region was treated as the main polluted spot and immediate action should be taken for further recovery of water quality. The Kanpur region is one of the most important industrialized place in India. It is the most polluted stretch of the Ganga River, because of its excessive pollutant discharge from the i...

Electric Vehicle: Public Health and Climate Benefits

A research team led by Daniel Peters at Northwestern University has investigated that if we introducing electrifying vehicles in the streets of the United States could annually prevent hundreds-to-thousands of premature accidental deaths.This work highlights the potential of a synergistic solution to reduce CO 2 emissions by hundreds to millions of tons annually. The estimate of economic damages induced by introducing electrifying vehicles (EV) adoption is substantial. With current infrastructure, about 25% of electrifying vehicles adoption in the US can save approximately $16.8 billion annually, has been told in the study entitled"Public Health and Climate Benefits and Trade offs of U.S. Vehicle Electrification," in GeoHealth on 13 th August 2020 [1] .  Vehicle electrification in the United States could prevent hundreds to thousands of premature deaths annually while reducing carbon emissions by hundreds of millions of tons. This highlights the potential of co-beneficial...

RENEWABLE ENERGY'S ROLE IN ENVIRONMENTAL CLEEN-UP PROCESS

Human activity is overloading our atmosphere with carbon dioxide and other global warming emissions. These gases act like a blanket, trapping heat. The result is a web of significant and harmful impacts, from stronger, more frequent storms, to drought, sea level rise, and extinction. Most of global warming emissions come from our electricity sector. Most of those emissions come from fossil fuels like coal and natural gas . Sulfur dioxide (SO2) , which cause acid rain, comes from electricity generation. Nitrogen oxides (NOx) , which react with sunlight to create ground level ozone and smog, come from electricity generation.   Ozone (O3) occurs naturally in the upper atmosphere where it is beneficial.   Particulate matter is a type of air pollution more commonly referred to as soot. Carbon dioxide (CO 2 ) is a greenhouse gas that contributes to global climate change.   Mercury is a highly toxic metal that is released from coal-fired power plants. In contra...

Novel Approach of Plastic Waste to Flash Graphene

Prof. Algozeeb and his research collaboration team have investigated an novel approach of upcycling plastic waste (PW) products to flash graphene (FG). This method relies on Flash Joule Heating (FJH) to convert PW into FG. A sequential direct current (DC) and alternating current (AC) flash is used in order to make a high-quality graphene. In this FJH process, they established without catalyst and works for PW mixtures that can make the process suitable for handling landfill PW.  In 21 st century, PW pollution is considerable one among the various environmental issues. A very large fraction of PW ends up in the ocean, which leads to the formation of micro- and nanoplastics that threaten marine life, micro-organisms, useful bacteria, and humans. From the intense carbon footprint process, most of these synthesized plastics are used only once before dumping into landfills or water ways that terminate in the oceans. Hence, upcycling PW to higher value materials and chemicals is econ...

Innovations of Integrated Artificial Intelligence

Artificial intelligence (AI) is the study of methods to imitate intelligent human behavior. AI is widely heralded as an ongoing “revolution” transforming science and society altogether [ 1 , 2 ]. While approaches to AI such as machine learning, deep learning and artificial neural networks are reshaping data processing and analysis [ 3 ], healthcare, transportation and the production chain [ 4 ].  Figure 1. Integrated concept of artificial intelligence. AI Ethics Guidelines National and international organizations (European Commission, Organisation for Economic Co-operation and Development (OECD), UK House of Lords, Singapore Commission) have responded to these concerns by developing ad hoc expert committees on AI, often mandated to draft policy documents in various countries. In 2018 alone, companies such as Google and SAP publicly released AI guidelines and principles. The advisory council on the ethical use of AI scientific team have announced that results reveal a global co...

Scientific Research Focus on “To End Hunger”

According to the Food and Agriculture Organization of the United Nations (FAO UN), Hunger Report, Ending hunger is a major objective of the United Nations’ (UN) Sustainable Development Goals (SDG), hunger is the term used to define periods when populations are experiencing severe food insecurity - means that they go for entire days without eating due to lack of money, lack of access to food, or other resources [ 1 ]. Hunger is strongly interconnected with poverty, and it involves interactions among an array of social, political, demographic, and societal factors. An attention is must in the following topics to put an end card for poor hunger:  Global Hunger Index (GHI). World Food Program’s 2020. Global Report on Food Crises.   Smallholder-farming. Ceres2030. The two main international institutions are the International Institute for Sustainable Development (IISD) and the International Food Policy Research Institute (IFPRI) , joined forces to estimate what it would cost to ...

Electro-Organic Synthesis: Next Emerging Technique

Industrial developments, excessive energy consumption, sustainable technologies, environmental cleaning processes are major topics of political and social discourse. Current innovations are rated not only focusing on their benefit and utility but also concerning their eco-friendly approaches. The development of green technological processes is becoming more important and requires harmless energy sources. Particularly over the past decade, the severe limitations of fossil resources intensify the movement towards sustainable synthesis techniques with a strict cutback in the ecological footprint [ 1 ]. Electro-organic synthesis belongs to the synthetic organic chemistry discipline that facilities the direct use of electricity to generate valuable compounds. Hence, it is possible to transfer green aspects of sustainable energy sources to the whole production process [ 2 ]. Since the Kolbe’s discoveries of using electricity as a reagent for organic transformations over 170 years ago, ...

Sustainable Bio-energy Fuels

  The trend of exploring new sources of fuel for automobiles is increasing over the past decade, where the use of biodiesel as alternatives for fossil fuels is investigated exclusively, due to its potential of decreasing greenhouse gas and air pollutant emissions. Production and use of biodiesel can encourage the agricultural industry and provide self-reliance on automobile fuels which in turn boosts regional economic development. Biofuels or biodiesel is widely used as hybrid fuel in more than 20 countries around the world with an account annual consumption of over 2 million tons  [ 1 ] .  Figure 1. Credit to SNB. As an example in this context, considering the Hong Kong region, the increasing interest among the public to reduce air pollution drives them to use biodiesel as fuels. The environmental protection department of Hong Kong has conducted a feasibility study at the University of Hong Kong on the use of biodiesel as an automotive fuel in Hong Kong. The main motivat...

Detection of Cancer via New Nano-Based Imaging Agents

New imaging agents were developed by physicians to detect cancer with better specificity and sensitivity. Further, they have the potential to significantly improve patient outcomes. It could offer enhanced premature cancer cells detection during routine screening and help the surgeons to identify tumor margins for surgical resection. Figure 1. In vivo visualization of 200 nm G8-liposomes imaged following intravenous injection [ 1 ]. Notice the bright accumulation and homogenous appearance of liposomes encapsulated with G8 dye (green). The vasculature region depicted here is of the mouse ear where real time flow video was taken at 30 fps. Scale bar represents 50 μm. Recently, Helen R. Salinas et al ., has evaluated the optical properties from a colorful class of pigments and dyes that humans routinely encounter [ 1 ]. These selective dyes and pigments are approved by Food and Drug Administration  (FDA) which have utilized for the coloring of foods, drugs, and cosmetics. The authors...