Skip to main content

Activated PDS of Single-Atom-Fe(III): Nonradical Oxidation of Pollutants

Prof. Jiang et al., from (1. Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; 2. University of Chinese Academy of Sciences, Beijing, China, 3. Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China) and their research collaboration team have reported on the single-atom Fe(III)- and nitrogen doped carbon (Fe−N−C) which can efficiently activate peroxydisulfate (PDS) to selectively remove some organic pollutants following an unreported nonradical pathway.

Generally, PDS is used as an oxidant for the degradation of polluted water/soil, it generates sulfate radical intermediate for the degradation pollutants, and this radical unselectively reacts with most of the substances in water/soil. PDS can be activated by base, heat, UV, low valent transition metal ions (e.g., Co2+, Fe2+, Cu2+, and Ag+), and zero valent iron to produce a sulfate radical (SO4•−). All these PDS activation processes consume extensive energy or chemicals. Also, it is found that PDS is much cheaper and does not significantly reduce water pH upon addition. Sulfate radical is not preferred for purification of water. Therefore, recent research focus on the PDS activation without generating radicals is preferred to maximize its oxidation capacity for targeted pollutants.

This research work was published in Environmental Science & Technology on October 23, 2020 [1]. They find a new pathway for the degradation of pollutants without sulfate radicals, particularly, the coordinated Fe(III) is readily converted to Fe(V) through two-electron abstraction by PDS, and Fe(V) is responsible for the selective degradation of organic pollutants. The selectivity of the PDS/Fe−N−C oxidation process was examined with various pollutants, the PDS activation clearly follows a nonradical pathway. The highly dispersed Fe(III) sites on the Fe−N−C were proposed and converted to Fe(V) for pollutant degradation. This new approach is more effective than sulfate radical formation and also other reported nonradical oxidation like PDS/CuO under the same experimental conditions. This approach is also used to selectively degrade some organic pollutants through PDS activation.

Figure 1. Mechanism of nonradical oxidation of pollutants by single-atom-Fe(III) activated PDS [1]. 

If we use chlorinated water for purification process, chloride consumes a sulfate radical to produce a chlorine radical (Cl2•−), which not only reduces the oxidation potential toward pollutants but also produces hazardous chlorinated by-products [2]. Therefore, to avoid sulfate radical formation approach, a new approach is needed for water purification system with PDS. Lee et al., proposed similar approach that PDS can be attached to carbon nanotubes (CNTs) and react with phenolic compounds [3]. CNTs posses a high specific surface area (200−500 m2g−1), however, their effectiveness for PDS activation still needs to be improved further.

Single-atom catalysts (SACs), with active metal sites dispersed in the single-atom state, have attracted a greater attention and wide interest in recent years for catalytic reactions. Some of the SACs were reported for the catalytic application with good efficiency. Particularly, a single cobalt-atom catalyst (Co−N−C), metal and nitrogen co-doped carbon materials [M−N−Cs (M = Fe, Co, Mn, etc.,)] and Fe(III)-doped g-C3N has been successfully prepared, which showed good activity in peroxymonosulfate (PMS) activation. Also, the SACs have utilized its metal sites, that shows an excellent catalytic activity, structural stability and becomes a frontier in catalysis, especially for hydrogen evolution, oxygen reduction, and CO2 conversion. These results inspired us to search for an appropriate M−N−C to activate for the cheaper PDS.

As an first attempt, Jiang et al. and his team have apply a single atom Fe(III) for effective PDS activation without generating radicals. Further, they have prepared single atom site of Fe−N−C characterized by Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, X-ray adsorption spectra (XAS) including X-ray adsorption near-edge structure (XANES) and extended X-ray adsorption fine structure (EXAFS).

Oxidation of pollutants was tested with batch reactions. They used phenol, bisphenol A, chlorophenols, sulfamethoxazole, atrazine, benzoic acid, EDTA, p-chloro benzoic acid, and benzothiazole to test the selectivity of the PDS/Fe−N−C-coupled oxidation. Further, they observed that all the compounds were degraded in this process except for benzothiazole, p-chloro benzoic acid, and benzoic acid. Benzoic acid and p-chloro benzoic acid have low reactivity possibly because of no substituent group existing at their α-C, which is not favorable for Fe(V) attack. Because of the high stability of the thiazole ring, benzothiazole was barely degraded here. The selectivity also shows that PDS/Fe−N−C has lower oxidation power as compared with sulfate and hydroxyl radicals.

Important points regarding environmental significance of this research work:

  • The single-atom Fe(III) material, Fe−N−C, can efficiently activate PDS to degrade some organic pollutants.
  • The PDS activation follows a nonradical pathway with Fe(V) as the possible intermediate oxidant for pollutant removal.
  • This reported SACs were used for the remediation of polluted groundwater and soil, and the treatment of drinking water and some industrial wastewater without any toxicity.
  • A low dosage of the Fe−N−C can achieve relatively high efficiency in pollutant degradation.

Our SNB team recommended this research article to enrich our viewer’s knowledge to know about the single-atom Fe(III)- and nitrogen doped carbon (Fe−N−C) can efficiently activate PDS to selectively remove some organic pollutants followed with an unreported nonradical pathway. The research studies showed that PDS can be activated while not generating radicals, that is, the pollutants can be degraded just through electron transfer to PDS. Hence, the future work is needed to develop an low cost approaches to obtain a large amount of single-atom Fe−N−C materials (e.g., through pyrolysis of biosolids) and to investigate the selectivity of the PDS/Fe−N−C oxidation and the transformation pathway of pollutants.

References

  1. N. Jiang, et al., Environ. Sci. Technol. (2020) https://dx.doi.org/10.1021/acs.est.0c04867.
  2. T. Zhang, et al., Environ. Sci. Technol. 48, 5868 (2014).
  3. H. Lee, et al., Chem. Eng. J. 266, 28 (2015).

Blog Written By

Dr. A. S. Ganeshraja

Assistant Professor

National College, Tiruchirappalli

Tamil Nadu, India

Author Profile

Editors

Dr. K. Rajkumar

Dr. S. Chandrasekar

Reviewers

Dr. Y. Sasikumar

Dr. S. Thirumurugan

Dr. K. Vaithinathan

Comments

Popular posts from this blog

A Biomimetic Eye with Perovskite Nanowire

The term “Biomimetics” derived from Ancient Greek, refers to life imitation. It is an interdisciplinary field in which comes from biology, engineering, and chemistry concepts. Biomimetics is applied to the synthesis of  machines, or devices, which have functions that mimic real-life biological processes.  Prof. Fan Zhiyoung , Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China, and his team (from the University of California and Lawrence Berkeley National Laboratory, USA) has reported on the effective biological eye results with a new development “Biomimetic Eye” with supportive components such as hemispherical shape retina and perovskite nanowires  [1] .  Our eyes possess exceptional image and sensing nature, which selectively express the wide field of view, resolution, and sensitivity [2] . A specialty of biomimetic eye parts with such highlighted characteristics is a desirable one, specifically in robotics

Pottery Shard CNTs Discovery in Sixth Century: Keeladi, Tamilnadu, India

Prof. Manivannan et al., and his research collaboration team have been investigated the discovery of carbon nanotubes in sixth century BC potteries that have obtained from Keeladi, Tamilandu, India. This investigation has reported in Nature publication journal of “Scientific Reports” on 13 th November 2020 [ 1 ]. This is one of the most interesting reports and scientific research from Keeladi excavation located in the southern part of India. Keeladi Excavation: The excavation was first started in Pallisanthai Thidal which is in the north of Manalur, about a kilometer east of the town of Keeladi in Sivagangai district, Tamilnadu, India. Number of various archaeological residues were found in this excavation, when plowing the land around the site. The first survey was conducted in 2013 in the vicinity of the Vaigai river, 293 sites were identified during the study including Keeladi, and all this sites have an archaeological residues [ 2 ]. A part of excavation, researchers found carbon

Bifunctional Water Splitting Catalysts: Large Current Density

Fuel cell technology is one of the most emerging fields with ecofriendly and everlasting energy source way of producing energy for the urgent requirements. Further it needs to be improved to make it cheap and more environmental friendly. Among all fuel cells, the hydrogen (H 2 ) and oxygen (O 2 ) fuel cell is the one with zero carbon emission, more ecofriendly, high potential and the byproduct is just only the water. However, supplying the fuels in the purest form (at least the H 2 ) is very essential to ensure higher life cycles and less decay in cell efficiency. Nowadays, commercially available large scale H 2 production is mainly dependent on steam reforming of fossil fuels which can also generates CO 2 along with H 2 and the source that is going to be depleted, and this byproduct is not environmental friendly. Therefore, an emerging alternate technology is needed; in this case the electrolysis of water has given a greater attention than the steam reforming.  Recently many sc

Efficient Bio-Diesel Synthesis: Reusable Magnetic Catalysis

Prof. Anping Wang et al., with his research collaborative team from china ( 1. Guizhou University, China; and 2. Guizhou Normal University, China) and India (National Chemical Laboratory, India) have reviewed the research over views on the preparation methods, physicochemical properties, stabilization/functionalization, and the catalytic applications of magnetic materials, including magnetic acids, bases, enzymes, and acid-base bifunctional materials for the synthesis of bio-diesel. Here, we discuss only the preparation of efficient bio-diesel with merits and applications of magnetic nanocatalyst for the bio-diesel preparation . Bio-diesel products are mainly attain from bio mass feed stocks, which gives more attention in the biorefinery research affairs [1]. A green way of renewable liquid biofuels are emergency required one in present atmosphere. Among the various classes, best one is renewable diesel fuel, the chemical content of long-chain fatty acid methyl ester (FAME) or ethy

Threatened Species: An Alert of Red List from IUCN

International Union for Conservation of Nature (IUCN) organization was established in 1964 to safeguard our natural species information details. This organization helps to identify the species when these are diminished due to abnormal issues in environmental forces or evolutionary changes in their population numbers. IUCN was recommended the information on the global risk status of plants, fungus, and animal species [1] . Overall world, the term “Biodiversity” and their conservation progress is an attentive one. As per IUCN, the announced Red List shows a critical condition of the world’s natural biodiversity. The major part of assessments representing on the Red List (in IU CN) are accounted out by following government/non-government members:  Species Survival Commission  (SSC).  Red List Partners .  Red List Authorities  (RLAs).  O ther specialists (who working on assessment projects).  It gives information about the probable range, habitat, population size, ecology, threats, and co

Wearable Laser-Induced Graphene Mask

Prof. Ruquan Ye, from city University of Hong Kong and his collaboration with Prof. Chunlei Zhu, Ben Zhong Tang, and their research team have developed photo-thermally laser-induced graphene as a wearable mask with superior antibacterial capacity. Face masks have become a life-sustaining role in fighting against the outbreak of diseases like EBOLA and COVID-19. However, improper usage and disposal of masks may lead to secondary transmission around the globe. The vital role of the mask is a primary source to prevent us from COVID-19. In this pandemic situation, we must be alert about the used mask materials. The materials should safeguard us from COVID-19 as well as it must be bio-degradable material to safeguard around the world.       The masks, currently available in the market are of single-use with/without filtering layers of thermoplastic materials like polypropylene. The degradation of these used masks takes at least 10 year

Hot Hole-Deriven Water Splitting via LSPR Metal Nanostructures

The localized surface plasmon resonance (LSPR) in metal nanostructures is one of the most efficient materials for the futuristic energy, environmental science and industry. The new era is the ability to significantly drive and promote photocatalytic reactions and photodetection which acts as an interfacial energy transfer to adsorbate molecules and semiconductors.  The combination of plasmonic noble metallic nanostructures with semiconductors for plasmon-enhanced visible light-driven water splitting (WS) has attracted considerable attention. WS is one of the most capable way to save solar energy into other useful energy applications. In WS, solar energy is converted to chemical energy mainly in the form of hydrogen and oxygen. Some of the review reports indicate that the highest reported quantum efficiency for overall WS achieved is 57% with NiO/NaTaO 3 :La photocatalyst under the excitation wavelength of 270 nm [1]. Its large scale commercial applications are still lacking due to

Micro-Alloying of ‘Stainless Mg’ via Ca: Exceptional Corrosion Resistance

German Scientists have established an alloy with ultra-high-purity of magnesium of exceptionally low corrosion rate– Stainless Magnesium approach, via alloying of pure magnesium (Mg) with a tiny amounts of calcium (Ca) has been reported in Materials Horizons on 24 th November 2020. Mg is found to be the lightest structural metal with various properties like high strength-to-weight ratio, excellent electrochemical characteristics, Young’s modulus similar to human bone with low cost. Mg is widely used in aerospace, electronic, automotive, biomedical and energy-storage applications owing to its high strength, low weight, and excellent electrochemical properties, due to its abundance in the earth’s crust. Particularly, Mg possess light weight than aluminium (Al) and makes attractive from a sustainable perspective. Therefore, replacing of Al with ‘ Stainless Mg ’ in flights and cars will reduce the fuel consumption with free of carbon dioxide emissions. However, its usage is limited and r

Giant Spontaneous Hall Effect Without a Magnet

Surprising phenomenon in the solid state physics was “ The Hall effect, which requires normally magnetic fields, can also be generated completely in a different way by without the magnet to give an extreme strength ” – Published by Sami Dzsabera  et al., in the Proceedings of the National Academy of Sciences, on 19 th February 2021. Weyl–Kondo semimetal have been discovered recently, the three-dimensional (3D) Dirac cones that describes with massless relativistic quasiparticles, which was stabilized by breaking via  either time-reversal symmetry (TRS) or inversion symmetry (IS). Sami Dzsabera  et al., have reported the discovery of  a giant spontaneous Hall effect in 3D materials, which have not only identifies an ideal technique. However, it will demonstrates a strong correlations that can drive extreme topological responses, which we can expect to trigger for future work. Further, they reported that the giant spontaneous Hall effect of semimetal seems to be the non-centrosymmetr

Designing of Corrosion Resistant Alloys via Percolation Theory

Canada and USA Scientists have reported on designing of corrosion-resistant alloys via percolation theory and published in Nature Materials on 01 February 2021. Nickel–chromium, Iron–chromium binary alloys can serve as the prototypical corrosion-resistant metals owing to its presence of a nanometre-thick protective passive oxide film. The main key criterion for good passive behavior is the passive film should be compromised via a scratch or abrasive wear that can be reformed with a little metal dissolution. This could be a principal reason for the stainless steels and other chromium containing alloys that are used for critical applications which ranges from nuclear reactor components to biomedical implants. A long-standing unanswered question in corrosion science is the unravelling of the compositional dependence of the electrochemical behavior of the alloys [ 1, 2 ]. The discovery of the family of these alloys were increased its rate with the advent of artificial intelligence, da